
Hierarchical Hybrid Statistic based Video Binary Code and Its
Application to Face Retrieval in TV-Series

Yan Li1,2, Ruiping Wang1, Shiguang Shan1, Xilin Chen1,3
1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing, 100190, China
2 University of Chinese Academy of Sciences, Beijing, 100049, China

3 Department of Computer Science and Engineering, University of Oulu, Oulu 90570, Finland
yan.li@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn

Abstract— We address the problem of video face retrieval in
TV-Series, which searches video clips based on the presence
of particular character, given one video clip of his/hers. This
is tremendously challenging because on one hand, faces in
TV-Series are captured in largely uncontrolled conditions with
complex appearance variations, and on the other hand retrieval
task typically needs highly efficient representation with low time
and space complexity. To handle such problems, we propose a
compact and discriminative binary representation for the huge
body of video data based on a novel hierarchical hybrid statistic.
Our method, named Hierarchical Hybrid Statistic based Video
Binary Code (HHSVBC), first utilizes different parameterized
Fisher Vectors (FVs) as frame representation that can encode
multi-granularity low level variation information within the
frame, and then models the video by its frame covariance
matrix to capture high level variation information among
video frames. To incorporate discriminative information and
obtain more compact video signature, the high-dimensional
video representation is further encoded to a much lower-
dimensional binary vector, which finally yields the proposed
HHSVBC. Specifically, each bit of the code, is produced via
supervised learning in a max margin framework, which aims
to make a trade-off between code discriminability and stability.
Face retrieval experiments on two challenging large scale TV-
Series video databases demonstrate the competitiveness of the
proposed HHSVBC over state-of-the-art retrieval methods.

I. INTRODUCTION

Video face retrieval in general is to retrieve shots contain-
ing a particular person given one video clip of his/hers [1].
It is a promising problem which has received an increasing
amount of attention, especially in the era of Big Data,
where huge body of videos can be found on the user-
generated video sharing sites like YouTube, such as news
programs, dramas, and homemade videos, etc. Technically
speaking, video face retrieval is a crucial part for video
analyzing and understanding. There exist a wide range of
applications relying on it, e.g., ‘intelligent fast-forwards’ -
where the video jumps to the next shot containing the specific
character; retrieval of all the shots containing a particular
family member from a number of short videos captured by
a digital camera; and rapid locating and tracking of criminal
suspects from masses of surveillance videos. In this paper,
we mainly focus on the problem of video face retrieval in
TV-Series with character’s one video clip as query.

Undoubtedly, the core technique for video face retrieval
is face recognition, which has long been established as one

of the most active research directions in computer vision.
However, compared with traditional face recognition, video
face retrieval has its unique characteristics. In particular,
different from traditional image based recognition, video pro-
vides much more information, which could be exploited to
resolve the inherent ambiguities of image based recognition,
like sensitivity to appearance variations caused by head pose,
lighting, occlusion, and resolution [1]. Nevertheless, how to
utilize the rich video information effectively needs to be
considered adequately.

In this paper, we first utilize Fisher Vector (FV) [2], [3],
[4] to adequately describe video frames, considering that FV
has been widely recognized as a compelling discriminative
descriptor. Then, we represent each video as the second-order
covariance of all the frame descriptors. Though covariance
matrix has been proved natural and efficient for video mod-
eling [5], [6], [7], [8], it is not exploited as a pooling strategy
to further integrate FV-like statistics. Therefore, our method
essentially represents a video as statistic (covariance) of
statistic (Fisher Vectors), named by us Hybrid Statistic (HS),
where the FV encodes low level statistical information within
each video frame, and the covariance matrix captures high
level statistical information among video frames. Moreover,
by exploiting different numbers of Gaussian modes in FV,
we further obtain a series of HS in a coarse-to-fine multi-
granularity hierarchical structure. It is also in this sense that
our method is named by us Hierarchical Hybrid Statistic
(HHS), serving as the first-stage modeling of video.

Although HHS as a general video descriptor has a certain
descriptive capability by means of its complete modeling
of video variations, it does not involve any supervised
information which is crucial for retrieval. Besides, it is
not compact enough due to its high dimensionality for
fast retrieval, especially when the database is very large.
To solve this problem, we further encode the HHS into
a much lower-dimensional binary code as the final video
signature, i.e., Hierarchical Hybrid Statistic based Video
Binary Code (HHSVBC), where each bit of the code is
learned by explicitly optimizing for discrimination in a max
margin framework, inspired by a recent attribute learning
method [9]. By doing this, discriminability and stability are
considered jointly. To verify the effectiveness of our method,
we set up two challenging large scale hit TV-Series video

Danijel
Text Box
978-1-4799-6026-2/15/$31.00 ©2015 IEEE

databases, i.e., the Big Bang Theory (BBT) and Prison Break
(PB), and then conduct video face retrieval experiments
on them. Experimental results show the competitiveness of
the proposed HHSVBC over the state-of-the-art retrieval
methods.

The rest of this paper is organized as follows: Section
II discusses the related work of the proposed method.
Then Section III describes the Hierarchical Hybrid Statistic
(HHS) designed for video representation. Section IV shows
the binary code learning and optimization algorithm. Next,
Section V extensively evaluates our method on two large
scale TV-Series databases. Finally, we end with a summary
of conclusions and future work in Section VI.

II. RELATED WORK

Recent years have witnessed more and more studies on
video-related face classification [10], [11], [12], [13], [14],
[15], [16], [17], especially the entertainment videos, e.g.,
movies, TV-Series. For instance, Everingham et al. [11]
investigated the problem of labelling appearances of char-
acters in TV-Series and films; Arandjelović and Zisserman
[12] addressed the problem of automatically determining the
cast of feature-length film; Cinbis et al. [13] addressed the
identification problem for face tracks of TV-Series; Parkhi et
al. [16] investigated the problem of video face verification
with a compact and discriminative vector representation; and
Sivic et al. [10] tried to retrieve shots containing particular
person in video using an imaged face as query. More recently,
various of extra information is utilized to expect performance
boosting, e.g., Ortiz et al. [15] carried out the problem of
identifying a face track using a collected large dictionary
of still face images for assist; and Bäuml et al. [14] took
advantage of subtitles and fan transcripts to implement per-
son identification in TV-Series. While most of such previous
works have been devoted to an end-to-end system, including
those preprocessing stages such as shot boundary detection,
face detection, tracking, and face track extraction, etc, it is
generally believed that the pivotal technical components of
video face retrieval lie in two aspects, i.e., the video data
modeling and the final retrieval process, which are the exact
topics of this paper.

Since video can be naturally treated as a collection of
frame images, how to effectively represent a single image
serves as the first basis step to the success of video modeling.
Technically, image representation has always been of crucial
importance in most computer vision tasks. A number of
local descriptors have been invented for this purpose, and
widely used examples include the classic Local Binary
Pattern (LBP) [18], Histogram of Oriented Gradient (HOG)
[19], and Scale-Invariant Feature Transform (SIFT) [20],
etc. Another popular class of image representation is Bag-
of-Visual words (BoV) [21], which consists in extracting
a set of local descriptors, e.g., SIFT, in an image and in
assigning each to the closest entry of the visual vocabulary,
i.e., a codebook learned offline by clustering a large set
of local descriptors. Recently, a kind of extensions of BoV
appears which involves the use of more reasonable coding

techniques based on soft assignment. Representative meth-
ods include Locality-constrained Linear Coding (LLC) [22],
Super Vector (SV) [23], Kernel CodeBook (KCB) encoding
[24], and Fisher Vector (FV) [2], [3], [4]. Although all
these encoding methods have attracted lots of attention with
their appealing performance in image classification, among
them FV is shown to have an edge over the others on
a number of image recognition benchmarks [25], [4], as
it simultaneously utilizes the zero, first and second-order
statistic to characterize the rich information within images.
Due to its appealing property, in this paper we adopt the
sophisticated FV as the basic image representation.

As a video is comprised of frames (i.e., images), in
practice it is often to be treated as an image set. Compared
with treating video as separated frames and processing it
frame by frame, holistic modeling methods gradually exhibit
their advantages of not only compact representation but
also superior performance, after the pioneering work of
Yamaguchi et al. [26]. Typical image set modeling methods
include linear subspaces [26], [27], affine subspaces [28],
covariance matrices [6], [7], [8]. Among these, covariance
matrix which lies on a Riemannian manifold, as the raw
second-order statistic of the image set, provides a natural
representation for a video with any number of frames and
any type of image features, and characterizes the complicated
video structure more faithfully [6], [7], [8]. Also, as indicated
in [6], linear subspace models originate from an eigen-
decomposition of the covariance matrix while discarding
some important information. Taking such into consideration,
we resort to covariance matrices for representing videos in
this paper.

Though the above representation methods (whether im-
age or video) have gained success in various classification
tasks, the high dimensionality limits their applicability to
the retrieval scenario, which typically requires not only
accurate but also compact representation for fast and large-
scale search. Binary code is a natural solution to overcome
such shortcoming, as it is quite convenient to match, and
the storage capacity of very short codes is so large that all
the digital images in this world can be indexed [29]. Having
these properties, binary codes have been widely used as hash
keys for retrieval, and important examples include: Locality
Sensitive Hashing (LSH) [30], Spectral Hashing (SH) [31],
ITerative Quantization (ITQ) [32]. However, none of these
binary code learning methods would necessarily result in
discriminative codes. In order to incorporate discriminabil-
ity, recently a couple of supervised binary code learning
methods form a blowout. Representative methods include:
Semi-Supervised Hashing (SSH) [33], Kernel-based Super-
vised Hashing (KSH) [34], Supervised ITerative Quantization
(SITQ) [32], etc.

III. HIERARCHICAL HYBRID STATISTIC FOR VIDEO
MODELING

A. Fisher Vector Encoding for Image

The Fisher Vector (FV) is a high-dimensional image
representation derived from Fisher Kernel [2], [3], [4], and it

GMM32

A clip of “Michael Scofield”

from “Prison Break”

Extracted face track

represented by dense SIFT

GMM64 GMM1024

…

…

1st Fisher Covariance

C𝑑1×𝑑1

𝑓1 ∈ ℝ
𝑑1

𝑓2 ∈ ℝ
𝑑1

𝑓𝑀 ∈ ℝ𝑑1

2nd Fisher Covariance

C𝑑2×𝑑2

𝑓1 ∈ ℝ
𝑑2

𝑓2 ∈ ℝ
𝑑2

𝑓𝑀 ∈ ℝ𝑑2

Hth Fisher Covariance

C𝑑𝐻×𝑑𝐻

𝑓1 ∈ ℝ
𝑑𝐻

𝑓2 ∈ ℝ
𝑑𝐻

𝑓𝑀 ∈ ℝ𝑑𝐻

A Coarse-to-Fine Hierarchical Hybrid Statistic (HHS)

…

Video Clip Database

Michael Scofield
HHSVBC

11011101…1010101

Michael Scofield
HHSVBC

11011101…1010101

Sara Tancredi
HHSVBC

00011001…0100111

Lincoln Burrows
HHSVBC

10001001…1011111

HHSVBC
11011101…1010101

Discriminability

Constraint

Stability

Constraint

Binary Code Learning

Fisher Vector of 𝑀 frames

PCA

Fisher Vector of 𝑀 frames

PCA

Fisher Vector of 𝑀 frames

PCA

Fig. 1: Illustration of the proposed method. Given a video clip of one character as query, we extract the proposed Hierarchical
Hybrid Statistic based Video Binary Code (HHSVBC) to represent it and use Hamming distance to retrieve video clips
containing the specific character in database, which are also encoded in the form of HHSVBC.

is encoded by aggregating a large set of local features, e.g.,
dense SIFT features. In a nutshell, this is implemented by
fitting a parametric generative model, always the Gaussian
Mixture Model (GMM), to the local features, and then en-
coding the derivatives of the log-likelihood of the model with
respect to its parameters. As in [3], we train a GMM with
diagonal covariances, and only the derivatives with respect
to the mean and variance of each Gaussian component are
considered. This yields the representation which captures the
first-order and second-order differences between the dense
local features and each of the GMM centres:

Φ
(1)
k =

1
T
√

wk

T

∑
t=1

γt(k)(
xt −µk

σk
), (1)

Φ
(2)
k =

1
T
√

wk

T

∑
t=1

γt(k)
1√
2
[
(xt −µk)

2

σ2
k

−1]. (2)

Here, T is the total number of local features of the target
image, {µk,σk,wk} refer to the mean, diagonal covariance,
and mixture weight of the kth Gaussian of GMM, which is
computed on the training set, and γt(k) is the soft assignment
distribution of the tth local feature xt to the kth Gaussian.

An FV φ is finally obtained by stacking the differences,
i.e., φ = [Φ

(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
K ,Φ

(2)
K], where K denotes the

Gaussian number of GMM. To summarize, the above FV
encoding describes how the distribution of local features of
a particular image differs from the distribution fitted to the
local features of all the training images.

B. Frame Covariance Matrix Encoding for Video

As mentioned in Section II, covariance as the raw second-
order statistic of the video frames, provides a natural repre-
sentation for a video with any number of frames and any
type of image features, and therefore characterizes the video
structure more faithfully [6]. Formally, let F = [f1, f2, ..., fM]
be the data matrix of a video with M frames, where fi ∈Rd

denotes the ith frame with d-dimensional image represen-
tation. So we can represent the video with its d× d frame
covariance matrix:

C =
1

M−1

M

∑
i=1

(fi− f̄)(fi− f̄)T , (3)

where f̄ is the mean vector of all image frames. The diagonal
entries of the covariance matrix encode the variance of each
individual feature, and the off-diagonal entries encode their
respective correlations. It is well known that the nonsingular
covariance matrices lie on a Riemannian manifold rather than
the well studied Euclidean space [35].

C. A Novel Hierarchical Hybrid Statistic

FV is a sound descriptor proposed for depicting the
distribution of local features within a frame, whereas frame
covariance matrix acts as a promising statistic depicts the
appearance variance among frames. It would be wonderful
if we can have a robust video representation that can charac-
terize the frame-wise variance without losing the complete
characterization of each frame. This motivates us to propose
a novel Hybrid Statistic (HS) by taking into account the
advantages of both FV and frame covariance matrix to yield
the so called fisher covariance. Technically, we use FV as the
frame representation when computing the frame covariance
matrix, please see Fig. 1 for more intuitive understanding.

Let us view from a further perspective. The GMM in FV
can be understood as a probabilistic visual vocabulary, where
each Gaussian represents a word of the visual vocabulary:
wk encodes the relative frequency of the kth word, µk the
mean of the word, and σk the variation around the mean
[36]. Therefore, the size of the visual vocabulary/codebook,
i.e., the Gaussian number in GMM, is a crucial parameter
closely related to the final performance of FV, and intuitively
more Gaussians always lead to finer description, whereas

less Gaussians usually give a relatively coarser represen-
tation. However, it doesn’t necessarily mean that larger
vocabulary/codebook brings more competitive performance.
Actually, that is highly correlated with the real data, which
is also supported by the experimental results in Section V.

According to the above analysis, it might be difficult and
inadvisable to set the vocabulary/codebook to a fixed size. As
a consequence, we then further propose a new Hierarchical
Hybrid Statistic (HHS), which integrates a series of Hybrid
Statistic, i.e., fisher covariance matrices, with coarse-to-fine
Gaussian numbers (please refer to Fig. 1). Formally, a target
video can be represented as a set of Hybrid Statistic as
follow.

Ci = {Ci1,Ci2, ...,CiH}, (4)

where Ci denotes the HHS of the ith video, Cih denotes each
Hybrid Statistic, and H is the size of GMM parameters set.

IV. BINARY CODE LEANING

For each video, we can obtain a complete representation
of Hierarchical Hybrid Statistic (HHS) as Eqn. (4), but
meanwhile it magnifies the feature dimension, which cer-
tainly leads to higher space and time complexity, especially
conflicting with the demand of retrieval task. Moreover, the
HHS build above does not incorporate any supervision infor-
mation, which will definitely favor the retrieval accuracy. To
address this problem, our strategy is to discriminatively map
the high-dimensional representation HHS into a much lower-
dimensional Hamming space to produce a binary vector for
each video. Two advantages can be induced by doing this, the
concise space demand, and the low time cost (only bit-wise
XOR operation). Inspired by the recent binary code learning
work for attribute discovery [9], next we will discuss how to
efficiently learn binary codes from those high-dimensional
features.

A. Discriminability and Stability

First, the discriminability of binary codes in Hamming
space is expected most. To this end, we further decompose
the discriminability constraint into two components, i.e.,
intra-class compactness and inter-class separability. That
is, videos from the same category should have similar
codes, and videos from different categories should have
better separability in the target Hamming space. Formally,
let b ∈ {−1,1}S×N denotes the binary codes of training
instances, where S and N are the binary code length and
the total number of training video instances, respectively.
bi ∈ {−1,1}S×1 denotes the binary code of the ith training
instance. Then the distance measures of within-class SW and
between-class SB can be formulated as,

SW = ∑
c∈{1:R}

∑
i, j∈c

dis(bi,b j), (5)

SB = ∑
c
′∈{1:R}

i∈c
′

∑
c
′′∈{1:R}

c
′ 6=c
′′
, j∈c

′′

dis(bi,b j), (6)

Hyperplane A

 Discriminability

 Stability Hyperplane C

 Discriminability

 Stability

Hyperplane B

 Discriminability

 Stability

Fig. 2: Illustration of two constraints when learning binary
code, i.e., discriminability and stability, where the two gray
hyperplanes only satisfy either of the constraints, and the
green hyperplane is the one that we need.

where R is the total number of categories, dis(·) can be
any available distance measurement in Hamming space.
Thus, to implement a strong discrimination, we minimize
the following energy function Edisc.

Edisc = SW −λ1SB. (7)

Second, another crucial constraint in binary code learning
is similarity preserving, and in this paper it is referred
to stability, which indicates that visually similar instances
should be mapped to similar binary codes within a short
Hamming distance. In some sense, the above discriminability
constraint, i.e., Edisc, only minimizes the empirical risk on
the training instances, and here we add the stability constraint
to achieve structural risk minimization. Fig. 2 illustrates the
relationship between discriminability and stability. In particu-
lar, we resort to the classic Support Vector Machine (SVM) to
implement the binary code learning. More specifically, each
bit of the binary code can be thought of as a split of the
original feature space into two half-spaces, and each bit can
also be visualized as a hyperplane that separates instances
that have binary code value −1 v.s. the ones that have value
1.

Before the binary code learning, there is still one remain-
ing problem that the proposed Hybrid Statistic, i.e., fisher
covariance matrix, lies on a specific Riemannian manifold
rather than the well-studied Euclidean space which a lot of
off-the-shelf learning algorithms apply to. To address this
problem, we recur to Reproducing Kernel Hilbert Space
(RKHS) [37] with a sophisticated Riemannian kernel pro-
posed in [6] for help as Eqn. (8).

Ki j = trace[log(Pi) · log(Pj)], (8)

where Pi, Pj are Symmetric Positive Definite (SPD) matrices
lying on Riemannian manifold, log(·) is the ordinary matrix
logarithm operator, and trace[·] denotes the matrix trace.

As mentioned in Section III-C, the final Hierarchical
Hybrid Statistic (HHS) is composed of a series of Hybrid

Statistic, i.e., fisher covariance matrices with different num-
bers of Gaussian. Hence, to mining their complementary to a
wide extent, Multiple Kernel Learning (MKL) is used when
training SVM. In particular, we build S hyperplanes/splits
each corresponding to one bit of the binary code by training
S kernel SVMs individually. More concretely, we denote the
sth hyperplane by ωs (s = 1, · · · ,S), and the energy function
can be formulated as follow.

Estab = δ ∑
s∈{1:S}
i∈{1:N}

max(1−bs
i (ω

sT
ϕ

s(Ci)),0) (9)

+
1
2 ∑

s∈{1:S}
‖ωs‖2 +η ∑

s∈{1:S}
‖β s‖p,

s.t. < ϕ
s(Ci),ϕ

s(C j)>= ∑
h∈{1:H}

β
s
hKh(Cih,C jh),

β
s ≥ 0,∀s ∈ {1 : S},

where Ci, C j, Cih, C jh, H are consistent with the definitions
in Eqn. (4), ϕs(·) denotes the sth mapping function to map
Ci to a RKHS, bs

i ∈ {−1,1} indicates in which side of the
sth hyperplane the ith instance lies, Kh is the hth kernel
matrix computed by Eqn. (8), β s = [β s

1 ,β
s
2 , ...,β

s
H]

T is the
combination coefficients of the H kernel matrices for the
sth bit, and arbitrary norm can be assigned by setting the
subscript p.

After the above analysis, we can reach the final objective
function by combining Eqn. (7) and Eqn. (9) to simultane-
ously consider the discriminability and stability of the target
binary code:

min
ω,β ,b

Edisc +λEstab. (10)

B. Optimization Algorithm

Since the objective function Eqn. (10) is non-convex, it
is infeasible to find a global analytical solution. In practice,
block coordinate descent method to independently optimize
each individual component for iteratively updating ω , β , and
b. The pseudo-code of optimization can be found in Algo-
rithm 1. Next, we will give a detailed discussion. Assume
that we have N training video instances of R categories, and
for each instance we have the computed Hierarchical Hybrid
Statistic (HHS) Ci with its ground truth label li ∈ {1,2, ...,R},
where i ∈ {1,2, ...,N}.

Initialization: first, we compute the H kernel matrices
just once, i.e., Kh ∈ RN×N ,h ∈ {1,2, ...,H}, using Eqn. (8);
second, the kernel combination coefficients of each bit,
i.e., β s,s ∈ {1,2, ...,S}, is initially set to equal weight as
[1

H , 1
H , ..., 1

H]
T

; third, for each bit compute the corresponding
integrated kernel matrix Ks ∈RN×N ,s ∈ {1,2, ...,S} by Ks =

∑
H
h=1 β s

hKh; lastly, we conduct the initialization of binary
codes b ∈ {−1,1}S×N just randomly.

Fix b to optimize ω and β : in this step, we use bs ∈
{−1,1}1×N as training labels to train the sth bit’s kernel SVM
hyperplane ωs with Ks ∈ RN×N as training input. As we
also need to learn the kernel combination coefficients β s

of each bit, here we adopt an off-the-shelf MKL method,

Algorithm 1 Optimization
Input: Training instances Ci = {Ci1,Ci2, ...,CiH} and ground
truth labels li ∈ {1,2, ...,R}, where i ∈ {1,2, ...,N}.
Output: b ∈ {−1,1}S×N .
Initialization:
1. Compute Kh ∈ RN×N ,h ∈ {1,2, ...,H} with Eqn. (8);
2. β s = [1

H , 1
H , ..., 1

H]
T
,s ∈ {1,2, ...,S};

3. Ks = ∑
H
h=1 β s

hKh,s ∈ {1,2, ...,S};
4. Randomly initialize b ∈ {−1,1}S×N ;
Repeat several times
5. Fix b to optimize ω (i.e., U) and β with Eqn. (9);
6. Fix ω (i.e., U) and β to optimize b with Eqn. (7);
End
7. Ks = ∑

H
h=1 β s

hKh,s ∈ {1,2, ...,S};
8. bs = sgn(U sT Ks),s ∈ {1,2, ...,S};
9. b = [b1,b2, ...,bS]

T .

i.e., SimpleMKL [38], to simultaneously learn ωs and β s for
each bit. One more point, as we use kernel trick to handle the
non-linear mapping problem, the hyperplane ωs of each bit is
learnt in the form of projection U s ∈RN×1 according to Riesz
representation theorem, which further forms the integrated
U = [U1,U2, ...,US] ∈ RN×S corresponding to ω .

Fix ω and β to optimize b: having the learned ω and β , in
this step we use them to predict b and further optimize it. For
each bit, we first compute Ks = ∑

H
h=1 β s

hKh , and then use the
learned hyperplane ωs (i.e., U s) to predict bs by quantizing
the kernel SVM’s outputs as bs = sgn(U sT Ks). Next, we feed
the newly predicted b = [b1,b2, ...,bS]

T ∈ {−1,1}S×N into a
subgradient descend-based binary code optimization method
proposed in [9]. It is during this step that the discriminability
of binary codes is guaranteed.

Convergence criteria: the whole optimization is looped
by iteratively update ω , β , and b, and in practice we find that
usually two or three times iterations can make the objective
function converge.

Parameters setting: the objective function in Eqn. (10)
is used just as a conceptual formulation to depict the dis-
criminability and stability. As the optimization is conducted
separately in an iterative manner as in Algorithm 1, the
parameter λ mainly plays a role of balancing the two
components Edisc and Estab, and is simply set to equally
weight them. Besides, the only substantial parameters are
the soft margin parameters δ in Eqn. (9), which is simply
set to 1 as standard SVM, and the MKL parameter η in Eqn.
(9), which is also set to the default value as recommended
by the authors of SimpleMKL [38], i.e., 10−8. As for λ1 in
Eqn. (7), which just serves as a normalization factor, and it
is set to the value to balance the numbers of data pairs in
SW and SB.

V. EXPERIMENTS

A. Two Large Scale TV-Series Video Databases

To investigate the video face retrieval problem, we set
up two large scale video databases1 from two hit American

1The databases can be downloaded from http://vipl.ict.ac.cn/.

Fig. 3: Some exemplar face tracks of the two constructed
video databases, where the top three rows come from the Big
Bang Theory, and the rest three come from Prison Break.

shows, i.e., the Big Bang Theory (BBT), and Prison Break
(PB). These two TV-Series are quite different in their filming
styles. BBT is a sitcom about 20 minutes per episode with a
main cast of 5 characters and mostly takes place indoors. On
the other hand, PB has an average length of about 42 minutes
per episode, where many shots are set outside, resulting in
a large range of different illumination (some examples are
shown in Fig. 3). The original videos are acquired from
Blu-ray discs with 720P resolution. To extract the final face
tracks, several technologies, e.g., shot boundary detection,
face detection, tracking, and facial landmark localization are
conducted. To guarantee the purity of databases, we invite
5 fans of each TV-Series to annotate every extracted face
track. More detail, we deal with the first season of both TV-
Series, i.e., 17 episodes for BBT, and 22 for PB, and finally
we collect 4667 and 9435 face tracks from BBT and PB,
respectively.

B. Experimental Settings

For the proposed method, i.e., Hierarchical Hybrid S-
tatistic based Video Binary Code (HHSVBC), we fix the
hierarchical parameter H to 6, which ranges within 32, 64,
128, 256, 512, 1024 Gaussian numbers, mainly considering
the trade-off between retrieval performance and computation
complexity. The face size is fixed at 80×64 pixels. For each
database, we randomly select 10 face tracks per character for
training, and leave the rest as test data. Query set of each
database is consist of 10 face tracks per main character. For
quantitative evaluation, we use the standard mean Average
Precision (mAP) [39] and the precision recall curve as
measurements. For fair comparison, important parameters of
the competitive methods are empirically tuned according to
the recommendations in the original literatures as well as the
source codes provided by the authors.

C. Evaluation on Different Gaussian Numbers

As discussed in Section III, the crucial parameter of
Hybrid Statistic (HS), i.e., the Gaussian number, has a high
correlation with the accuracy of target representation. We are

more willing to believe that finer visual vocabulary/codebook
(i.e., more Gaussians) can capture more detailed structure
compared with coarser vocabulary/codebook (i.e., less Gaus-
sians), especially in the face-related problem which needs
very precise description. Table I shows the retrieval perfor-
mance in mAP with different Gaussian numbers for Hybrid
Statistic (HS) computation. An interesting phenomenon is
observed that the variation tendencies of this parameter on
BBT and PB present completely opposite. In BBT, which
contains many relatively simple close-up shots, finer Hybrid
Statistic (HS) brings better performance, whereas in PB,
which has relatively lower facial resolution, variable lighting,
and frequent occlusion, coarser Hybrid Statistic (HS) has
more advantages in turn. The last two rows of Table I show
the performance evaluation of the integrated Hierarchical
Hybrid Statistic (HHS), where subscript E.W. means using
equal weights to combine the kernel matrices, and L.W.
means learned weight with the proposed method. It is ob-
viously to see that compared with straightforward summing,
combining with learned weight fully takes advantage of the
complementarity among Hybrid Statistic (HS) of different
parameters. For more intuitive understanding, we visualize
the learned weights of the first 16 bits on each database, and
please see Fig. 4.

(a)

1
st
 b

it

2
n

d
 b

it

3
rd

 b
it

4
th

 b
it

5
th

 b
it

6
th

 b
it

7
th

 b
it

8
th

 b
it

9
th

 b
it

1
0

th
 b

it

1
1

th
 b

it

1
2

th
 b

it

1
3

th
 b

it

1
4

th
 b

it

1
5

th
 b

it

1
6

th
 b

it

HS64

HS128

HS256

HS512

HS1024

HS32

(b)

1
st
 b

it

2
n

d
 b

it

3
rd

 b
it

4
th

 b
it

5
th

 b
it

6
th

 b
it

7
th

 b
it

8
th

 b
it

9
th

 b
it

1
0

th
 b

it

1
1

th
 b

it

1
2

th
 b

it

1
3

th
 b

it

1
4

th
 b

it

1
5

th
 b

it

1
6

th
 b

it

HS64

HS128

HS256

HS512

HS1024

HS32

Fig. 4: Visualization of the learned kernel weights, i.e.,
combination coefficients of the 6 Hybrid Statistic (HS) of the
first 16 bits on two databases, i.e., (a) the Big Bang Theory
and (b) Prison Break. In this visualization, larger weight is
shown in lighter color.

D. Evaluation on Different Frame Representations

To further evaluate the effectiveness of the proposed
Hybrid Statistic (HS), here we compare Fisher Vector (FV)
with different front-end features as frame representations to
compute covariance matrix. In this part, raw gray feature,
histogram equalized gray feature, Local Binary Pattern (LBP)
[18], Histograms of Oriented Gradients (HOG) [19], and
Dense Scale-Invariant Feature Transform (DSIFT) [20] are
taken into consideration. As the superiority of FV against
other BoV encoding methods has been verified in plenty of
literatures [3], [25], [4], we will not take such features into
account. To simplify reproducibility, the HOG, DSIFT, FV

TABLE I: Evaluation on different frame representations used in covariance computation with mAP on two databases.
Feature the Big Bang Theory Prison Break

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits
Gray 0.3104 0.3510 0.3786 0.4032 0.4172 0.4430 0.1010 0.1018 0.1042 0.1075 0.1135 0.1189

Gray (HE) 0.3167 0.3662 0.4208 0.4666 0.4873 0.5120 0.1013 0.0996 0.1054 0.1103 0.1134 0.1187
LBP 0.3839 0.4653 0.5162 0.5332 0.5489 0.5678 0.1277 0.1382 0.1507 0.1667 0.1801 0.2043
HOG 0.4057 0.4874 0.5639 0.5998 0.6209 0.6479 0.1181 0.1273 0.1464 0.1619 0.1726 0.1924

DSIFT 0.4601 0.5319 0.6094 0.6453 0.6611 0.6803 0.1189 0.1307 0.1518 0.1714 0.1837 0.2008
HS32 0.5729 0.6524 0.7325 0.7505 0.7774 0.7961 0.1265 0.1458 0.1758 0.2069 0.2270 0.2616
HS64 0.5555 0.6663 0.7435 0.7731 0.8029 0.8131 0.1306 0.1533 0.1853 0.2130 0.2321 0.2598
HS128 0.5856 0.7186 0.7829 0.8071 0.8257 0.8406 0.1329 0.1519 0.1857 0.2167 0.2323 0.2577
HS256 0.5783 0.7213 0.7909 0.8195 0.8426 0.8600 0.1344 0.1547 0.1822 0.2012 0.2189 0.2434
HS512 0.6208 0.7918 0.8494 0.8573 0.8663 0.8730 0.1393 0.1552 0.1824 0.1996 0.2158 0.2365
HS1024 0.6530 0.8078 0.8597 0.8660 0.8731 0.8779 0.1450 0.1608 0.1829 0.2009 0.2119 0.2303

HHSE.W. 0.6194 0.7333 0.8194 0.8214 0.8374 0.8512 0.1372 0.1590 0.1925 0.2121 0.2235 0.2490
HHSL.W. 0.7177 0.8763 0.9113 0.9078 0.9116 0.9172 0.1703 0.1950 0.2279 0.2585 0.2743 0.3035

features are computed by using the publicly available VLFeat
toolbox [40] (version 0.9.17) with the defaults options. The
LBP implementation is acquired from Oulu CMV with
default parameters of uniformed patterns. Moreover, for fair
comparison, the dimensionalities of all front-end features are
reduced to the same value by PCA (300 for all the exper-
iments). The comparison results can be found on Table I.
The proposed Hybrid Statistic (HS) shows its overwhelming
superiority against the other features, and this implies that
covariance matrix possibly favors the representation based
on higher-order statistic, like FV. Besides, we can also find
that among the competitive features, DSIFT performs best.

E. Evaluation with State-of-the-art Binary Code Learning
Methods

Apart from the novel video representation, in this paper
we also proposed a binary code learning method. To evaluate
its performance, in this part we select several representative
binary code learning methods for comparison, including Lo-
cality Sensitive Hashing (LSH) [30], Spectral Hashing (SH)
[31], Random Rotation (RR) [32], Semi-Supervised Hashing
(SSH) [33], Kernel-based Supervised Hashing (KSH) [34],
ITerative Quantization (ITQ) [32], and Supervised ITerative
Quantization (SITQ) [32]. For fair comparison, we fix the
video representation part for all the methods by using the
proposed Hybrid Statistic (HS) with 256 Gaussians as sug-
gested in [4]. However, most of the competitive methods are
based on Euclidean space and do not have the kernel version.
Hence, here we use the Log-Euclidean Distance (LED) as [6]
to map the Riemannian Hybrid Statistic (HS) to Euclidean
space, in which all the competitive methods can handle. Table
II and Fig. 5 show the comparison results in mAP and PR
curve (please find more in supplementary materials). It is
obvious to find that supervised methods generally achieve
higher retrieval accuracy than those unsupervised and semi-
supervised methods, which mainly attribute to the full use of
supervised information. Compared with those state-of-the-art
supervised hashing methods, ours achieves more excellent
performance. A possible interpretation is our method also
incorporates the stability while considering the discriminabil-
ity, which makes the learned model better stability on unseen
data.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
256 bits on BBT

Recall

P
re

ci
si

on

LSH
RR
ITQ
SH
SSH
KSH
SITQ
HSVBC
HHSVBC

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
256 bits on PB

Recall

P
re

ci
si

on

LSH
RR
ITQ
SH
SSH
KSH
SITQ
HSVBC
HHSVBC

(b)
Fig. 5: Comparison with state-of-the-art binary code learning
methods with precision recall curve on two databases, i.e.,
(a) the Big Bang Theory (BBT) and (b) Prison Break (PB).
Without loss of generality, we only show the comparison
with 256 bits, please find more in supplementary materials.

F. Evaluation of Computational Complexity

In this subsection, we discuss about the computational
complexity of the proposed binary code learning method.
Compared with SH, RR, ITQ, SSH, SITQ, which con-
tain the operation of matrix decomposition, the proposed
method is computational efficient. More specifically, with
pre-computed kernel matrices, the whole training process of
our method takes less than 10 seconds for 256 bits on a PC
with Intel Core i7 processor of 3.40GHz. As for the front-
end Hierarchical Hybrid Statistic (HHS) computation, most
of the time is spent on computing the low-level descriptors
for the video frames (i.e., DSIFTs: 100ms per frame).

VI. CONCLUSION

In this paper, we address the problem of video face
retrieval. To solve this problem, we first decompose it into
two parts, i.e., complete video modeling and discriminative
binary code learning. For the former part, we take advantages
of Fisher Vector (FV) for frame encoding and frame covari-
ance matrix for video encoding, and propose a novel video
representation, named Hybrid Statistic (HS), which can also
be regarded as the statistic of statistic. Moreover, to make full
use of the complementarity among different parameterized
HS, we further extend the basic HS to a coarse-to-fine
Hierarchical Hybrid Statistic (HHS), which involves multi-
granularity information. To fit the proposed HHS to retrieval
task, a binary code learning method which jointly optimizes
discriminability and stability is proposed to map HHS to
the final Video Binary Code, i.e., HHSVBC. The learned
HHSVBC has been successfully applied to character retrieval
on two challenging video databases. Viewing from another

TABLE II: Comparison with state-of-the-art binary code learning methods with mAP on two databases.
Method the Big Bang Theory Prison Break

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits
LSH [30] 0.3533 0.3783 0.4093 0.4148 0.4414 0.4383 0.0959 0.0998 0.1048 0.1081 0.1078 0.1101
RR [32] 0.3885 0.4207 0.4042 0.4507 0.4622 0.4407 0.0985 0.0981 0.1018 0.1042 0.1065 0.1105
ITQ [32] 0.3434 0.3445 0.4033 0.4257 0.4428 0.4324 0.0999 0.1129 0.1083 0.1114 0.1095 0.1098
SH [31] 0.4086 0.4225 0.3802 0.3809 0.3765 0.3972 0.0914 0.0901 0.0978 0.0964 0.1048 0.1059

SSH [33] 0.3401 0.3134 0.2830 0.2757 0.2878 0.3656 0.1138 0.1527 0.1488 0.1417 0.1409 0.1436
KSH [34] 0.4981 0.5799 0.6506 0.6965 0.7094 0.7300 0.1218 0.1571 0.1546 0.1619 0.1630 0.1599
SITQ [32] 0.5384 0.6185 0.6702 0.6891 0.7006 0.7165 0.1070 0.1211 0.1326 0.1462 0.1578 0.1640
HSVBC 0.6208 0.7918 0.8494 0.8573 0.8663 0.8730 0.1393 0.1552 0.1824 0.1996 0.2158 0.2365

HHSVBC 0.7177 0.8763 0.9113 0.9078 0.9116 0.9172 0.1703 0.1950 0.2279 0.2585 0.2743 0.3035

perspective, each bit of the HHSVBC can be understood as
an attribute classifier which indicates the presence or absence
of specific attribute of the video. While these attributes have
been proven discriminative, they can hardly be described
by human beings, i.e., there is nothing of explicit semantic
information. In the future, we would explore the inherent
connection between HHSVBC and semantic attributes for
more convenient and practical computer vision applications.

VII. ACKNOWLEDGEMENTS

This work is partially supported by Natural Science Foun-
dation of China under contracts Nos. 61222211, 61379083,
61390511, and the FiDiPro program of Tekes.

REFERENCES

[1] C. Shan, “Face recognition and retrieval in video,” in Video Search
and Mining. Springer, 2010, pp. 235–260.

[2] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for
image categorization,” in CVPR. IEEE, 2007, pp. 1–8.

[3] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV. Springer, 2010, pp.
143–156.

[4] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classi-
fication with the fisher vector: Theory and practice,” IJCV, vol. 105,
no. 3, pp. 222–245, 2013.

[5] Y. Li, R. Wang, Z. Cui, S. Shan, and X. Chen, “Compact video code
and its application to robust face retrieval in tv-series,” in BMVC.
BMVA Press, 2014.

[6] R. Wang, H. Guo, L. S. Davis, and Q. Dai, “Covariance discriminative
learning: a natural and efficient approach to image set classification,”
in CVPR. IEEE, 2012, pp. 2496–2503.

[7] J. Lu, G. Wang, and P. Moulin, “Image set classification using holistic
multiple order statistics features and localized multi-kernel metric
learning,” in ICCV, 2013.

[8] R. Vemulapalli, J. K. Pillai, and R. Chellappa, “Kernel learning for
extrinsic classification of manifold features,” in CVPR. IEEE, 2013,
pp. 1782–1789.

[9] M. Rastegari, A. Farhadi, and D. Forsyth, “Attribute discovery via
predictable discriminative binary codes,” in ECCV. Springer, 2012,
pp. 876–889.

[10] J. Sivic, M. Everingham, and A. Zisserman, “Person spotting: video
shot retrieval for face sets,” in Image and Video Retrieval. Springer,
2005, pp. 226–236.

[11] M. Everingham, J. Sivic, and A. Zisserman, “Hello! my name is...
buffy–automatic naming of characters in tv video,” 2006.

[12] O. Arandjelović and R. Cipolla, “Automatic cast listing in feature-
length films with anisotropic manifold space,” in CVPR, vol. 2. IEEE,
2006, pp. 1513–1520.

[13] R. G. Cinbis, J. Verbeek, and C. Schmid, “Unsupervised metric
learning for face identification in tv video,” in ICCV. IEEE, 2011,
pp. 1559–1566.

[14] M. Bäuml, M. Tapaswi, and R. Stiefelhagen, “Semi-supervised learn-
ing with constraints for person identification in multimedia data,” in
CVPR. IEEE, 2013, pp. 3602–3609.

[15] E. G. Ortiz, A. Wright, and M. Shah, “Face recognition in movie
trailers via mean sequence sparse representation-based classification,”
in CVPR. IEEE, 2013, pp. 3531–3538.

[16] O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman, “A compact
and discriminative face track descriptor,” 2014.

[17] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain, “Un-
constrained face recognition: Identifying a person of interest from a
media collection,” TIFS, vol. 9, pp. 2144–2157, 2014.

[18] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
binary patterns,” in ECCV. Springer, 2004, pp. 469–481.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, vol. 1. IEEE, 2005, pp. 886–893.

[20] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[21] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ECCV, vol. 1, no. 1-22, 2004, pp. 1–
2.

[22] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in CVPR. IEEE,
2010, pp. 3360–3367.

[23] X. Zhou, K. Yu, T. Zhang, and T. S. Huang, “Image classification using
super-vector coding of local image descriptors,” in ECCV. Springer,
2010, pp. 141–154.

[24] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W.
Smeulders, “Kernel codebooks for scene categorization,” in ECCV.
Springer, 2008, pp. 696–709.

[25] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,”
in BMVC. BMVA Press, 2011, pp. 76.1–76.12.

[26] O. Yamaguchi, K. Fukui, and K.-i. Maeda, “Face recognition using
temporal image sequence,” in FG. IEEE, 1998, pp. 318–323.

[27] T.-K. Kim, J. Kittler, and R. Cipolla, “Discriminative learning and
recognition of image set classes using canonical correlations,” PAMI,
vol. 29, no. 6, pp. 1005–1018, 2007.

[28] H. Cevikalp and B. Triggs, “Face recognition based on image sets,”
in CVPR. IEEE, 2010, pp. 2567–2573.

[29] P. Lyman and H. Varian, “How much information 2003?” 2004.
[30] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high

dimensions via hashing,” in VLDB, vol. 99, 1999, pp. 518–529.
[31] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS,

2008, pp. 1753–1760.
[32] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean

approach to learning binary codes,” in CVPR. IEEE, 2011, pp. 817–
824.

[33] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in CVPR. IEEE, 2010, pp. 3424–3431.

[34] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in CVPR. IEEE, 2012, pp. 2074–2081.

[35] X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for
tensor computing,” IJCV, vol. 66, no. 1, pp. 41–66, 2006.

[36] F. Perronnin, C. Dance, G. Csurka, and M. Bressan, “Adapted vocab-
ularies for generic visual categorization,” in ECCV. Springer, 2006,
pp. 464–475.

[37] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[38] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “Simplemk-
l,” JMLR, vol. 9, pp. 2491–2521, 2008.

[39] A. Turpin and F. Scholer, “User performance versus precision mea-
sures for simple search tasks,” in SIGIR. ACM, 2006, pp. 11–18.

[40] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of
computer vision algorithms,” in MM. ACM, 2010, pp. 1469–1472.

